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Abstract. A full-wave moment method technique de-

veloped for the analysis of quasi-optical systems is used

to model finite grid structures. This technique incor-

porates an electric field dyadic Green’s function for a

grid centered between two lenses in free space which

is derived by separately considering paraxial and non-

paraxial fields. Results for the driving point reflection

coefficient of a 3 x 3 grid are computed and compared

with measurements.

1. Introduction

Quasi-optical techniques provide a means for com-

bining power from numerous solid-state millimeter-

wave sources without lossy metallic interconnections.

Power from the sources in an array is combined over

a distance of many wavelengths to channel power pre-

dominately into a single paraxial mode, see Fig. 1.

Progress toward large, high-powered, efficient arrays is

hampered by the relatively crude state of design tech-

nology including the lack of suitable computer aided

engineering tools. In particular, the many unit ac-

tive circuits in a large array cannot be individually

optimized for efficiency and stability. This is because

no simulation process has been developed to model

impedances and stability criteria for a finite array

where most of the array elements see different circuit

conditions.

The essential component of quasi-optical modeling

is development of circuit-level models of quasi-optical

structures. The conventional modeling approach us-

ing moment method techniques requires the derivation

of a mixed, scalar and vector, potential Green’s func-

tion. In this paper a full-wave moment method imple-

mentation is developed for the analysis of finite grid

structures in the quasi-optical lens system shown in

Fig. 1. A series of developments [1–3] culminated in

a straight forward methodology for developing a novel

Green’s function of a quasi-optical system. The elec-

tric field dyadic Green’s function of a quasi-optical

system is derived in two parts: one part describing

the effect of the quasi-optical paraxiall fields and the

other part describing the remaining fields. This form

of the dyadic Green’s function is particularly conve-

nient for quasi-optical systems because of its relative

ease of development. It did, however necessitate the

development of an advanced method of moments ap-

proach combining spatial domain and spectral domain

techniques to model ii quasi-optical open cavity res-

onator [4]. With this formulation the field solver can

be conveniently used in the development of circuit-level

models of quasi-optical systems.
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Quasi-opticid lens system configuration for am-

plifier/oscill ator arrays.

2. Quasi-Optical Lens System D:yadic Green’s

Function

The approach used in [2, 3] to develop a dyadic

Green’s function for a quasi-optical c,pen cavity res-

onator is used here to develop a Green’s function for

the system shown in Fig. 1. In this configuration the

array is centered between two lenses in free space where

both lenses are assumed to be identical and equally

spaced from the array. The dyadic Grl:en’s function is
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derived in two parts where

— — ——
GE = GE. + GE. (1)

— —
where ~~n and ~Em describe the non-modal and

modal fields, respectively. The non-modal fields are—

found by removing the paraxial components ~E~ from—
the free space dyadic Green’s function, GEO, to give

— — — —

GE = ~EO – ~Ep + GEm (2)

The final dyadic Green’s function is evaluated in two

parts
— —
GE = ~El + &l) (3)

— —
where GE, = ~Bm — ~EP represents the contribution

—

of the lenses (quasi-optical modes) and GEo represents

the free space (direct radiation) contribution.

Following a similar derivation of that in [2,3] results

in the following:

Rnmtirnn ,
‘E1 = ‘~ (1 _R~#JEmnEmn iT (4)

with the free space dyadic Green’s function defined as

‘EO(r’r’)=(i+ivb)exp$%’)‘5)
— —

where ~ and ~1’ are the unit dyad and transverse unit

dyad, respectively. The scalar electric modal field Emn

k given by the Hermite-Gaussian traveling wave-beam

defined in [1] and R ~~ and v~~ represent the reflec-

tion coefficient and phase, respectively, of the traveling

wave-beam modes [2, 3].

3. Method of Moments

The moment method technique developed in [4]

which incorporates a dyadic Green’s function for the

quasi-optical open cavity resonator and combines both

spatial and spectral domains is used here to incorpo-

rate the dyadic Green’s function of the quasi-optical

lens system. The boundary value problem for the cur-

rent distribution on the conductor grid surface, located

at z = 0, is formulated as an electric field integral

equation. The grid surface is segmented into rectan-

gular cells and a Galerkin method is used employing

sinusoidal basis functions to give the following linear

system

[Z] [1] = [V] (6)

to be solved for the unknown currents In. With the

dyadic Green’s function in (3) being comprised of two

components, the moment matrix elements in [Z] may

also be divided into two parts

Ji (z’, y’) dz’dy’dr dy (8)

and

The free space moment matrix elements in (9) are also

formulated in the spectral domain [4,5] for computing

the self-terms to avoid singularities that occur in (5).

For the excitation vector V in (6) a delta-gap volt-

age generator is used and the driving point impedance

is computed as the ratio of the current flowing through

the gap to the voltage at the gap.

4. Comparison of Computed and Experimental

Results

Measurements and simulations were performed in

free space for the 3 x 3 grid shown in Fig. 2. The

grid consists of 9 unit cells where each unit cell is of

dimension 51.8 mm x 51.8 mm with the metallic grid

lines having a length of L = 42 mm and a width of

W = 6.35 mm. The gap spacing where the active

device would be was 9.8 mm.
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Figure 3: Driving point reflection coefficient: (a) nmgni-
Figure 2: A 3 x 3 grid with the driving point impedance

tude; (b) phase; of the extended unit cell: solid
being measured in the middle gap: (a) other

gaps opened; (b) other gaps shorted.
line, simulation; dashed line, measurement.

Fig. 3 shows the driving point reflection coefficient

for an extended unit cell (93.8 mm x 93.8 mm) with

the same grid line width and gap spacing. Next the

entire 3 x 3 grid structure was considered where the

driving point reflection coefficient was measured in the

middle gap. Figs. 4 and .5 shows the driving point

reflection coefficient with the other gaps opened and

shorted, respectively. From these results we can ob-

serve that there is significant mutual coupling between

the grid elements. Measurements and simulations were

also performed for the other gaps in the grid. The re-

sults indicate that the input impedance of edge and

corner gaps differ from that of the middle gap due to

the finite extent of the grid. This variation as well as

the coupling between cells is ignored in other attempts

at modeling quasi-optical systems [6]. The real value of

this modeling technique will come from the simulation

of much larger arrays.
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Figure 4: Driving point reflection coefficient: (a) magni-

tude; (b) phase; of the 3 x 3 opened grid: solid
(a) line, simulation; dashed line, measurement.
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Figure 5: Driving point reflection coefficient: (a) magni-
tude; (b) phase; of the3x3 shorted grid: solid

line, simulation; dashed line, measurement.

.5. Conclusions

A full-wave moment method implementation has

been developed for the analysis of finite grid structures

in a quasi-optical lens system. This implementation

includes the derivation of a dyadic Green’s function

for this quasi-optical system and a moment method

scheme utilizing both spatial and spectral domains for

efficient computation of the moment matrix elements.

As a verification of the moment method, simulated

results have been shown to compare favorably with

measurements. The significance of the modeling work

are: ( 1 ) finite sized grids are considered (there is no

need to make the simplifying assumption of an infinite

grid of identical unit-cells as is required in all other

quasi-optical system modeling approaches); and (2) it

is broadband (from DC to any frequency) as required

in CAD. From a system development point of view the

design of each element in the array can be individu-

ally optimized to achieve an optimum global solution

in terms of stability, output power and efficiency.
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